Inactivation of the nodH gene in Sinorhizobium sp. BR816 enhances symbiosis with Phaseolus vulgaris L.

نویسندگان

  • Roseline Remans
  • Carla Snoeck
  • Christel Verreth
  • Anja Croonenborghs
  • Ellen Luyten
  • Maxime Ndayizeye
  • Esperanza Martínez-Romero
  • Jan Michiels
  • Jos Vanderleyden
چکیده

Sulfate modification on Rhizobium Nod factor signaling molecules is not a prerequisite for successful symbiosis with the common bean (Phaseolus vulgaris L.). However, many bean-nodulating rhizobia, including the broad host strain Sinorhizobium sp. BR816, produce sulfated Nod factors. Here, we show that the nodH gene, encoding a sulfotransferase, is responsible for the transfer of sulfate to the Nod factor backbone in Sinorhizobium sp. BR816, as was shown for other rhizobia. Interestingly, inactivation of nodH enables inoculated bean plants to fix significantly more nitrogen under different experimental setups. Our studies show that nodH in the wild-type strain is still expressed during the later stages of symbiosis. This is the first report on enhanced nitrogen fixation by blocking Nod factor sulfation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rhizobium freirei sp. nov., a symbiont of Phaseolus vulgaris that is very effective at fixing nitrogen.

Common bean (Phaseolus vulgaris L.) can establish symbiotic associations with several Rhizobium species; however, the effectiveness of most strains at fixing nitrogen under field conditions is very low. PRF 81(T) is a very effective strain, usually referred to as Rhizobium tropici and used successfully in thousands of doses of commercial inoculants for the common bean crop in Brazil; it has sho...

متن کامل

Genome Sequence of Rhizobium esperanzae Type Strain CNPSo 668, Isolated from Phaseolus vulgaris Nodules in Mexico

Rhizobium esperanzae CNPSo 668T is a nitrogen-fixing symbiont of Phaseolus vulgaris isolated from Mexican soils. Its genome is estimated at 6,294,057 bp, with 6,219 coding sequences (CDSs) showing higher similarity (92.9%) with Rhizobium etli Three copies of the regulatory nodD, in addition to other nodulation genes, should define its host specificity.

متن کامل

Rhizobium tropici nodulation factor sulfation is limited by the quantity of activated form of sulfate.

Rhizobium tropici is a broad host-range symbiont of Phaseolus vulgaris. This bacterium produces a mixture of sulfated and non-sulfated N-methylated pentameric nodulation (Nod) factors. To understand the genetic bases of the partial sulfation of R. tropici Nod factors, which might be involved in the broad host-range of this species, we introduced in R. tropici CFN299 the recombinant plasmid pGMI...

متن کامل

Reclassification of Rhizobium tropici type A strains as Rhizobium leucaenae sp. nov.

Rhizobium tropici is a well-studied legume symbiont characterized by high genetic stability of the symbiotic plasmid and tolerance to tropical environmental stresses such as high temperature and low soil pH. However, high phenetic and genetic variabilities among R. tropici strains have been largely reported, with two subgroups, designated type A and B, already defined within the species. A poly...

متن کامل

Conservation of plasmid-encoded traits among bean-nodulating Rhizobium species.

Rhizobium etli type strain CFN42 contains six plasmids. We analyzed the distribution of genetic markers from some of these plasmids in bean-nodulating strains belonging to different species (Rhizobium etli, Rhizobium gallicum, Rhizobium giardinii, Rhizobium leguminosarum, and Sinorhizobium fredii). Our results indicate that independent of geographic origin, R. etli strains usually share not onl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FEMS microbiology letters

دوره 266 2  شماره 

صفحات  -

تاریخ انتشار 2007